Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.

Identifieur interne : 001536 ( Main/Exploration ); précédent : 001535; suivant : 001537

Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.

Auteurs : Alexandre Huber [Suisse] ; Bernd Bodenmiller ; Aino Uotila ; Michael Stahl ; Stefanie Wanka ; Bertran Gerrits ; Ruedi Aebersold ; Robbie Loewith

Source :

RBID : pubmed:19684113

Descripteurs français

English descriptors

Abstract

The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.

DOI: 10.1101/gad.532109
PubMed: 19684113
PubMed Central: PMC2725941


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.</title>
<author>
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, University of Geneva, Geneva, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Molecular Biology, University of Geneva, Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bodenmiller, Bernd" sort="Bodenmiller, Bernd" uniqKey="Bodenmiller B" first="Bernd" last="Bodenmiller">Bernd Bodenmiller</name>
</author>
<author>
<name sortKey="Uotila, Aino" sort="Uotila, Aino" uniqKey="Uotila A" first="Aino" last="Uotila">Aino Uotila</name>
</author>
<author>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
</author>
<author>
<name sortKey="Wanka, Stefanie" sort="Wanka, Stefanie" uniqKey="Wanka S" first="Stefanie" last="Wanka">Stefanie Wanka</name>
</author>
<author>
<name sortKey="Gerrits, Bertran" sort="Gerrits, Bertran" uniqKey="Gerrits B" first="Bertran" last="Gerrits">Bertran Gerrits</name>
</author>
<author>
<name sortKey="Aebersold, Ruedi" sort="Aebersold, Ruedi" uniqKey="Aebersold R" first="Ruedi" last="Aebersold">Ruedi Aebersold</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19684113</idno>
<idno type="pmid">19684113</idno>
<idno type="doi">10.1101/gad.532109</idno>
<idno type="pmc">PMC2725941</idno>
<idno type="wicri:Area/Main/Corpus">001489</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001489</idno>
<idno type="wicri:Area/Main/Curation">001489</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001489</idno>
<idno type="wicri:Area/Main/Exploration">001489</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.</title>
<author>
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, University of Geneva, Geneva, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Molecular Biology, University of Geneva, Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bodenmiller, Bernd" sort="Bodenmiller, Bernd" uniqKey="Bodenmiller B" first="Bernd" last="Bodenmiller">Bernd Bodenmiller</name>
</author>
<author>
<name sortKey="Uotila, Aino" sort="Uotila, Aino" uniqKey="Uotila A" first="Aino" last="Uotila">Aino Uotila</name>
</author>
<author>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
</author>
<author>
<name sortKey="Wanka, Stefanie" sort="Wanka, Stefanie" uniqKey="Wanka S" first="Stefanie" last="Wanka">Stefanie Wanka</name>
</author>
<author>
<name sortKey="Gerrits, Bertran" sort="Gerrits, Bertran" uniqKey="Gerrits B" first="Bertran" last="Gerrits">Bertran Gerrits</name>
</author>
<author>
<name sortKey="Aebersold, Ruedi" sort="Aebersold, Ruedi" uniqKey="Aebersold R" first="Ruedi" last="Aebersold">Ruedi Aebersold</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
</analytic>
<series>
<title level="j">Genes & development</title>
<idno type="eISSN">1549-5477</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Cycloheximide (pharmacology)</term>
<term>Phosphorylation (drug effects)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Biosynthesis (physiology)</term>
<term>Protein Synthesis Inhibitors (pharmacology)</term>
<term>Protein Transport (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Proteome (drug effects)</term>
<term>RNA Polymerase I (metabolism)</term>
<term>RNA Polymerase III (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Biosynthèse des protéines (physiologie)</term>
<term>Cycloheximide (pharmacologie)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Inhibiteurs de la synthèse protéique (pharmacologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéome (effets des médicaments et des substances chimiques)</term>
<term>RNA polymerase I (métabolisme)</term>
<term>RNA polymerase III (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>RNA Polymerase I</term>
<term>RNA Polymerase III</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Cycloheximide</term>
<term>Protein Synthesis Inhibitors</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phosphorylation</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>RNA polymerase I</term>
<term>RNA polymerase III</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Cycloheximide</term>
<term>Inhibiteurs de la synthèse protéique</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Biosynthesis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Transduction du signal</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19684113</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1549-5477</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Genes & development</Title>
<ISOAbbreviation>Genes Dev</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>1929-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gad.532109</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, University of Geneva, Geneva, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bodenmiller</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uotila</LastName>
<ForeName>Aino</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stahl</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wanka</LastName>
<ForeName>Stefanie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gerrits</LastName>
<ForeName>Bertran</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aebersold</LastName>
<ForeName>Ruedi</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loewith</LastName>
<ForeName>Robbie</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>206173</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>N01HV28179</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01-HV-28179</GrantID>
<Acronym>HV</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genes Dev</MedlineTA>
<NlmUniqueID>8711660</NlmUniqueID>
<ISSNLinking>0890-9369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104954">MAF1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011500">Protein Synthesis Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100984">TAP42 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98600C0908</RegistryNumber>
<NameOfSubstance UI="D003513">Cycloheximide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C530964">SCH9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012318">RNA Polymerase I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012320">RNA Polymerase III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003513" MajorTopicYN="N">Cycloheximide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011500" MajorTopicYN="N">Protein Synthesis Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012318" MajorTopicYN="N">RNA Polymerase I</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012320" MajorTopicYN="N">RNA Polymerase III</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
<ArticleId IdType="pii">23/16/1929</ArticleId>
<ArticleId IdType="doi">10.1101/gad.532109</ArticleId>
<ArticleId IdType="pmc">PMC2725941</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Nov 3;127(3):635-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Feb;32(2):51-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17174096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Mar;4(3):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Mar;25(3):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Oct;7(19):3470-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Jan;7(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18225956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):78-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Jun;28(12):4204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jul;19(7):2708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 11;283(28):19184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Nov;7(11):2138-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Dec;20(6):678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Dec 26;32(6):878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Apr;24(7):2779-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:261-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Apr;19(4):375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jun 29;310(1):1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11419933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 1;30(3):643-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Jun 1;372(Pt 2):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2004;77:323-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2004 Jul 15;76(14):3935-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 Sep;3(9):1336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2558053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Feb 7;185(2):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9055829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Dec;13(16):1505-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9509571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 20;251(2):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 25;280(8):6455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):6899-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Jan;6(1):112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 14;312(5771):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15044-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Apr;19(4):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Genève</li>
</region>
<settlement>
<li>Genève</li>
</settlement>
<orgName>
<li>Université de Genève</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Aebersold, Ruedi" sort="Aebersold, Ruedi" uniqKey="Aebersold R" first="Ruedi" last="Aebersold">Ruedi Aebersold</name>
<name sortKey="Bodenmiller, Bernd" sort="Bodenmiller, Bernd" uniqKey="Bodenmiller B" first="Bernd" last="Bodenmiller">Bernd Bodenmiller</name>
<name sortKey="Gerrits, Bertran" sort="Gerrits, Bertran" uniqKey="Gerrits B" first="Bertran" last="Gerrits">Bertran Gerrits</name>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
<name sortKey="Uotila, Aino" sort="Uotila, Aino" uniqKey="Uotila A" first="Aino" last="Uotila">Aino Uotila</name>
<name sortKey="Wanka, Stefanie" sort="Wanka, Stefanie" uniqKey="Wanka S" first="Stefanie" last="Wanka">Stefanie Wanka</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Genève">
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19684113
   |texte=   Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19684113" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020